For more than forty years, electronic surveillance law in the United States developed under constitutional and statutory regimes that, given the technology of the day, distinguished content from metadata with ease and certainty. The stability of these legal regimes and the distinctions they facilitated was enabled by the relative stability of these types of data in the traditional telephone network and their obviousness to users. But what happens to these legal frameworks when they confront the Internet? The Internet’s complex architecture creates a communication environment where any given individual unit of data may change its status — from content to non-content or visa-versa — as it progresses Internet’s layered network stack while traveling from sender to recipient. The unstable, transient status of data traversing the Internet is compounded by the fact that the content or non-content status of any individual unit of data may also depend upon where in the network that unit resides when the question is asked. In this IP-based communications environment, the once-stable legal distinction between content and non-content has steadily eroded to the point of collapse, destroying in its wake any meaningful application of the third party doctrine. Simply put, the world of Katz and Smith and the corresponding statutes that codify the content/non-content distinction and the third party doctrine are no longer capable of accounting for and regulating law enforcement access to data in an IP-mediated communications environment. Building on a deep technical analysis of the Internet architecture, we define new terms, communicative content, architectural content, and architectural metadata, that better reflect the structure of the Internet, and use them to explain why and how we now find ourselves bereft of the once reliable support these foundational legal structures provided. Ultimately, we demonstrate the urgent need for development of new rules and principles capable of regulating law enforcement access to IP-based communications data.
READ MORE